Extremal Lattices of Minimum 8 Related to the Mathieu Group M 22

نویسندگان

  • Christine Bachoc
  • Gabriele Nebe
چکیده

In this paper, we construct three new extremal lattices of minimum 8; one is 3-modular and of dimension 40, the two others are unimodular of dimension 80. They are strongly connected to the 20-dimensional lattice with automorphism group isomorphic to 2:M 22 :2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On some self-dual codes and unimodular lattices in dimension 48

In this paper, binary extremal self-dual codes of length 48 and extremal unimodular lattices in dimension 48 are studied through their shadows and neighbors. We relate an extremal singly even self-dual [48, 24, 10] code whose shadow has minimum weight 4 to an extremal doubly even selfdual [48, 24, 12] code. It is also shown that an extremal odd unimodular lattice in dimension 48 whose shadow ha...

متن کامل

The E 8 - lattice , the Leech lattice and beyond

In this elementary talk, we introduce basics about rational lattices and give examples. Some lattices are really good ones, notably the E8-lattice in dimension 8 and the Leech lattice in dimension 24. Both have remarkable finite isometry groups and give sphere packings of remarkably high minimum norms and high packing densities. Generalizations to higher dimensions have been considered, for exa...

متن کامل

S-extremal strongly modular lattices

S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only fin...

متن کامل

S - extremal strongly modular lattices par

S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only fin...

متن کامل

On extremal lattices in jump dimensions

Let (L,Q) be an even unimodular lattice, so L is a free Z-module of rank n, and Q : L → Z a positive definite regular integral quadratic form. Then L can be embedded into Euclidean n-space (R, (, )) with bilinear form defined by (x, y) := Q(x + y) − Q(x) − Q(y) and L defines a lattice sphere packing, whose density measures its error correcting properties. One of the main goals in lattice theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998